Structure-function analysis of invasion plasmid antigen C (IpaC) from Shigella flexneri.
نویسندگان
چکیده
Shigella flexneri causes a self-limiting gastroenteritis in humans, characterized by severe localized inflammation and ulceration of the colonic mucosa. Shigellosis most often targets young children in underdeveloped countries. Invasion plasmid antigen C (IpaC) has been identified as the primary effector protein for Shigella invasion of epithelial cells. Although an initial model of IpaC function has been developed, no detailed structural information is available that could assist in a better understanding of the molecular basis for its interactions with the host cytoskeleton and phospholipid membrane. We have therefore initiated structural studies of IpaC, IpaC I', (residues 101-363 deleted), and IpaC Delta H (residues 63-170 deleted). The secondary and tertiary structure of the protein was examined as a function of temperature, employing circular dichroism and high resolution derivative absorbance techniques. ANS (8-anilino-1-napthalene sulfonic acid) was used to probe the exposure of the hydrophobic surfaces under different conditions. The interaction of IpaC and these mutants with a liposome model (liposomes with entrapped fluorescein) was also examined. Domain III (residues 261-363) was studied using linker-scanning mutagenesis. It was shown that domain III contains periodic, sequence-dependent activity, suggesting helical structure in this section of the protein. In addition to these structural studies, investigation into the actin nucleation properties of IpaC was conducted, and actin nucleation by IpaC and some of the mutants was exhibited. Structure-function relationships of IpaC are discussed.
منابع مشابه
Probiotic Bifidobacterium Lactis Bacteria Inhibit the Invasion Phenotype of Shigella Dysenteriae Induced By Invasion Plasmid Antigen C
Background and Aims: Shigellosis is an acute gastroenteritis and Invasion plasmid antigen C (IpaC) is the first effector protein for Shigella invasion of intestinal cells. Among lactic acid bacteria, Bifidobacterium lactis (B. lactis) has received increasing attention for protection of a potential host against gastrointestinal infections. The aim of this study was to investigate the inhibitory ...
متن کاملSoluble invasion plasmid antigen C (IpaC) from Shigella flexneri elicits epithelial cell responses related to pathogen invasion.
Shigella flexneri invades colonic epithelial cells by pathogen-induced phagocytosis. The three proposed effectors of S. flexneri internalization are invasion plasmid antigens B (IpaB), IpaC, and IpaD, which are encoded on the pathogen's 230-kb virulence plasmid and translocated to the extracellular milieu via the Mxi-Spa translocon. To date, there are no definitive functional data for any purif...
متن کاملMolecular cloning of invasion plasmid antigen (ipa) genes from Shigella flexneri: analysis of ipa gene products and genetic mapping.
Tn5-tagged invasion plasmid DNA (pWR110) from Shigella flexneri serotype 5 (strain M90T) was cloned into the expression vector lambda gt11. Recombinant phage (lambda gt11Sfl) expressing pWR110-encoded polypeptide antigens were identified by using rabbit antisera directed against S. flexneri M90T invasion plasmid antigens. Antigens encoded by lambda gt11Sfl recombinant phage were characterized b...
متن کاملUse of Shigella flexneri ipaC and ipaH gene sequences for the general identification of Shigella spp. and enteroinvasive Escherichia coli.
The products of the ipaB, ipaC, and ipaD genes are involved in the expression of the invasive phenotype in all species of Shigella and enteroinvasive Escherichia coli (EIEC). DNA probes derived from these genes are accurate indicators of the invasive phenotype (M. Venkatesan, J. M. Buysse, E. V. Vandendries, and D. J. Kopecko, J. Clin. Microbiol. 26:261-266, 1988); however, spontaneous loss of ...
متن کاملIpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes.
Shigella flexneri causes human dysentery after invading the cells of the colonic epithelium. The best-studied effectors of Shigella entry into colonocytes are the invasion plasmid antigens IpaC and IpaB. These proteins are exported via a type III secretion system (TTSS) to form a pore in the host membrane that may allow the translocation of other effectors into the host cytoplasm. TTSS-mediated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 5 شماره
صفحات -
تاریخ انتشار 2003